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Cooperative estimation and control are thriving topics of

research within the field of multi-agent systems. Coopera-

tion may enable or improve performance in task execution,

through local sensing and exchange of information.

With local mapping being undertaking complex and with

high energy consumption. In a GPS denied environment

without previous knowledge of the structure, autopilot tasks

cannot be executed, making cooperative estimation a better

suited option. This thesis is focused on investigating differ-

ent interaction topologies and the adequate selection of local

measurements to enable the collective estimation of position

and orientation of all vehicles.

This thesis provides an overall view on the fundamental

concepts of an UAV’s position and heading estimation algo-

rithm for a very specific set of conditions, such as, the lack

of GPS signal under a bridge deck.

Filters are fundamental to obtain the best estimation

possible with the sensors and models available. Due to its

optimal estimation capabilities, the Kalman Filter, and its

different variants have been used in autonomous navigation

for several years. Therefore, 3 of the used filtering algo-

rithms are Kalman Filter based.

1 Introduction

In recent years, unmanned aerial vehicles, also known

as UAVs, have been capturing the attention and interest in

a broad range of applications, such as search and coverage

missions, exploration, cooperative manipulation and control.

In each of these cases, the problem of cooperative localisa-

tion in a group of drones has to be solved. Cooperative lo-

calisation consists in improving the positioning capacity of

each drone through the exchanges of information with other

drones in the group [1].

Relative localisation between UAVs is a requisite for co-

operative localisation and orientation estimation in the case

when absolute localisation information such as information

from global positioning system (GPS) is unavailable or to

inaccurate to be used, which can happen indoors, in urban

environments and even forest and remote locations. Taking

this in consideration, relative localisation is a key parameter

in cooperative UAV systems [2].

The problem of cooperative position and orientation es-

timation in multi-agent systems is formulated in this thesis

considering a flight in formation with three drones labelled

1,2,3. The formation is composed by a leader aircraft, 3, at

unknown location at time t, followed by two drones, 1 and 2,

each equipped with a GPS receiver.

A convenient solution for relative location is to obtain

the distance and bearing information using cameras and AI

methods. Nevertheless,there is the limitation of cameras only

being able of operate within a limited range and are prone

to suffer from occlusion and lighting conditions. In opposi-

tion, distance measurements can be obtained using different

sensors such as ultra-wideband (UWB), radars, and lidars,

which can operate over a much larger range [2].

There are, already, several methods used for solving

cooperative localisation problems, such as the Extended

Kalman Filter (EKF) for a centralised system, or, if the com-

putation is decentralised and the communication is unreli-

able, other techniques like Covariance Intersection or Inter-

leaved Update. Approaches that assume bounded errors us-

ing polytopes and linear programming algorithms have also

been proposed [1].

The work is focused on investigating the correlation be-

tween number of drones used and the results in the coop-

erative estimation of the position. The different interaction

topologies between drones and the adequate selection of lo-

cal measurements. As well as the better suited filtering tech-

niques to enable the collective estimation of position and ori-

entation of all vehicles taking in consideration the problem

constraints.

2 Background

The first concept introduced is orientation. In order to

understand orientation, first of all, two concepts must be in-

troduced, the local and inertial referential. These two con-

cepts are fundamental to the use of Euler angles, the heading

parameters, and for a proper sensor’s output usage. In this



subsection, the mathematics behind Euler angles and the ro-

tation matrix are key to the understanding of the heading’s

representation. And, therefore, major for a suitable descrip-

tion of orientation sensors. The sensors used are the rate

gyroscope, the accelerometer and the magnetometer.

Following the orientation overview, the positioning sen-

sors must be described as well. Once the correct estimation

of the third drone position lies on it. The sensors used are the

GPS and two vision based algorithms whose output is the

relative position and relative orientation between drones.

The last concept mentioned in this section is filtering.

Filters are fundamental to obtain the best estimation possible

with the sensors and models available. The majority of the

filters presented are variations of the Kalman Filter. These

variations can be due to the non-linear nature of the model,

Extended Kalman Filter, or a Kalman Filter interpretation of

Complementary Filtering.

2.1 Orientation

2.1.1 Local and Inertial Referential

Each vehicle has its own local referential, {Vi}, i ∈
[1,2,3], sympathetic with the drone’s kinematic, that is

defined by its position, I~pi, i ∈ [1,2,3], and orientation,

[φi,θi,ψi], i ∈ [1,2,3], in an inertial referential, {I}.

Fig. 1. Local Referential. Fig. 2. Inertial Referential.

Each aircraft has its position expressed in the inertial

referential as:

I~pi = (xi,yi,zi) (1)

where, (xi,yi,zi), i ∈ [1,2,3], represents the location of the

ith aircraft in a coordinate system external to all vehicles.

2.1.2 Euler Angles.

Intuitively the orientation is defined by three angles, the

Euler angles, known as roll, pitch and yaw.

Roll is angle of rotation related to the x-axis, whose no-

tation is φ. Pitch is the angle of rotation related to the y-axis,

whose notation is θ. Yaw is the angle of rotation related to

the z-axis, whose notation is ψ.

This representation of Euler angles are shown in Figure

3.

Fig. 3. Euler angles: sequence of standard rotations.

The similarity between linear coordinates and angular

coordinates makes Euler angles very intuitive, but unfortu-

nately they have a huge disadvantage, the possible loss of a

degree of freedom (Gimbal Lock). A potential solution to the

gimbal lock is to represent the orientation in other way that

not with Euler angles. Alternative representations for orien-

tation that can be adopted are rotation matrices, quaternions,

or direct cosine matrices (DCM).

2.2 Rotation Matrices

In order to avoid singularities, rotation matrices are used

in this thesis instead of Euler angles [9]. A vector defined at

any local referential, {Vi}, can be transformed into the in-

ertial referential, {I}, employing sequentially the three rota-

tions, each one given by its rotation matrix.

The Roll rotation matrix of the ith aircraft is defined as:

I
i R(φ) =





1 0 0

0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)



 (2)

The Pitch rotation matrix of the ith aircraft is defined as:

I
i R(θ) =





cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)



 (3)

The Yaw rotation matrix of the ith aircraft is defined as:

I
i R(ψ) =





cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1



 (4)

Therefore, the Rotation Matrix of the ith aircraft,
I
i R(ψ)

I
i R(θ)

I
i R(φ), with notation cξ = cos(ξ) and sξ = sin(ξ)

is defined as:

I
i R =





cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcθ sψsθcφ − cψsφ

−sθ cθsφ cθcφ



 (5)

2.3 Rate Gyroscope

A rate gyro is a type of gyroscope that indicates angular

rates, that is, ω = [p,q,r] without a fixed point of reference.



Although there is no direct correspondence between the an-

gular rates [p,q,r] and the derivatives of Euler angles, the

following approximation for small roll and pitch angles can

be used: [p,q]≈ [φ̇, θ̇].

Rate gyros are defined by a drift term and zero mean

Gaussian noise, resulting from the manufacturing process.







ygyro,x = p+βgyro,z +ηgyro,x,ηgyro,x ∼ N(0,0.0169)
ygyro,y = q+βgyro,z +ηgyro,y,ηgyro,y ∼ N(0,0.0169)
ygyro,z = r+βgyro,z +ηgyro,z,ηgyro,z ∼ N(0,0.0169)

(6)

Where, [p,q,r], represents the angular rates, βgyro the Bias

and ηgyro the sensor’s noise in the readings. The gyro noise,

ηgyro, is driven by noise of ARW (Angular Random Walk),

and a Gaussian can be defined as being zero mean, µ ≈ 0,

σgyro = 0.0169s−1 and ηgyro ∼ N(0,0.0169) [10].

The bias is a drift term driven by noise of RRW (Rate

Random Walk) and is defined as [3]:

f (t) =







βgyro,x =−0.0113

βgyro,y = 0.0322

βgyro,z = 0.0115

(7)

2.4 Accelerometer

An accelerometer is a sensor that measures proper ac-

celeration. Proper acceleration is the acceleration of a body

in its own instantaneous rest frame. This is different from

coordinate acceleration, which is acceleration in a fixed co-

ordinate system.

The accelerometer can be modelled as the following [4]:







yacc,x = gsen(θ)+ηacc,x

yacc,y =−gcos(θ)sen(φ)+ηacc,y

yacc,z =−gcos(θ)cos(φ)+ηacc,z

(8)

The noise of the accelerometer:







ηacc,x ∼ N(0,0.005112)
ηacc,y ∼ N(0,0.007291)
ηacc,z ∼ N(0,0.1614)

(9)

This sensor is used to obtain measurements of [φ,θ], thus

an extra sensor to obtain the measurement of ψ must be in-

corporated.

2.5 Magnetometer

The magnetic field sensors can be used as a compass

and therefore determine the orientation of the sensor relative

to the magnetic north pole. The output is, intuitively, the yaw

value, ψ, plus white noise, ηmag [5].

ymag = ψ+ηmag, ηmag ∼ N(0,12.399) (10)

3 Position

The position estimates can be obtained using three sets

of measurements: GPS coordinates of two aircraft, inter-

vehicle distance and inter-vehicle angle.

Each aircraft has its position regarding the inertial refer-

ential, {I}, defined as:

I~pi = (xi,yi,zi), i ∈ [1,2,3] (11)

3.1 GPS

GPS, or Global Positioning System, is a global naviga-

tion system that uses satellites, a receiver and algorithms to

synchronise location, velocity and time data for air, sea and

land travel.

The GPS output is modelled as:







yGPS,x =
I px +ηGPS,x, ηGPS,x ∼ N(0,3.24)

yGPS,y =
I py +ηGPS,y, ηGPS,y ∼ N(0,3.24)

yGPS,z =
I pz +ηGPS,z, ηGPS,z ∼ N(0,0.6881)

(12)

The Gaussian was estimated based on data from Global

Positioning System (GPS) Standard Positioning Service

(SPS) Performance Analysis Report [6].

3.2 Distance Sensor

The distance sensor is an AI vision based sensor. As

seen in the beginning of this section, the distance sensor is

based on the relative positioning of the drones. In particular

the module of the vectors. And its output is:

ydistance = || ~di, j||+ηdistance, [i 6= j] ∈ [1,2,3] (13)

ηdistance ∼ N(0,1×10−6) (14)

The noise was arbitrated based on the article Error Eval-

uation in a Stereo-vision-Based 3D Reconstruction System

[7].

3.3 Angle Sensor

The angle sensor is also an AI vision based sensor. The

angle sensor is also based on the relative positioning of the

drones. In particular the normalised vectors. And its output

is:

yangle =
~di, j

|| ~di, j||
, [i 6= j] ∈ [1,2,3]+ηangle (15)

ηangle ∼ N(0,5×10−7) (16)

The noise was arbitrated based on the article Error Eval-

uation in a Stereo-vision-Based 3D Reconstruction System

[7].



4 Filtering

4.1 Kalman Filter

The kalman filter is an algorithm based on prediction,

the first step, where it produces an estimate of the current

state as well as its uncertainty and then a subsequent update,

the second step.

The current state is calculated using the known system

model, input vector as well as the previous state. This step

does not include the system’s process noise and nonlinear-

ities. After observing the output measurements, which are

corrupted with error, both the state and its uncertainty are

updated, given more weight to the more certain estimates,

this means that the algorithm is recursive.

It is assumed that the simulation errors and sensor’s

noise, ηx and ηy, are Gaussian with zero mean and its vari-

ance can be obtained from experimental data. Also, it’s as-

sumed that the dynamic systems are linear and can be de-

scribed in a matrix state space representation as follows:

{

x(k+1) = Ax(k)+Bu(k)+ηx(k), ηx(k)∼ N(0,Rw)
y(k) =Cx(k)+Du(k)+ηy(k), ηy(k)∼ N(0,Rv)

(17)

The variables above are, k, discrete time, x, state vector, y,

output vector, u, input (or control) vector, A, state matrix, B,

input matrix, C, output matrix, D, the feedforward matrix,

ηx and ηy, the process noise and sensor’s error, are Gaussian

with zero mean and σx and σy as variance.

The system’s optimal state estimate is obtained using the

system’s predicted state estimate and the measurement with

a weighted average. The kalman gain, evaluates which mea-

sures have smaller estimated uncertainty and therefore are

trusted more.

The Measurement Update is defined as:















x̂(k+1|k+1) = x̂(k+1|k)+
+K(k+1)[y(k+1)−Cx̂(k+1|k)−Du(k+1)]

P(k+1|k+1) = P(k+1|k)−K(k+1)CP(k+1|k)
(18)

This process is repeated at every time step, with the new

predicted state estimate and its covariance being dependent

on the previous optimal state estimate. As seen in the follow-

ing equation:

{

x̂(k+1|k) = Ax̂(k|k)+Bu(k)
P(k+1|k) = AP(k|k)AT +Rw

(19)

The uncertainty of the measurements and of the current

state estimate are fundamental to obtain the Kalman Gain,

K(k + 1). The Kalman Gain is then used to calculate the

optimal state estimate, equation (17).

With a high gain, the filter places more weight on the

most recent measurements, and thus follows them more re-

sponsively. With a low gain, the filter follows the model pre-

dictions more closely.

K(k+1) = P(k+1|k)CT [Rv +CP(k+1|k)CT ]−1 (20)

4.2 Extended Kalman Filter

Previously, the Kalman Filter was described as a linear

estimation algorithm. Once the first implementations were

a non-linear one, an Extended Kalman Filter (EKF) must be

implemented. The system is now represented as follows:

{

x(k+1) = Ax(k)+Bu(k)+ηx(k), ηx(k)∼ N(0,Rw)
y(k) = h(xk,uk)+ηy(k), ηy(k)∼ N(0,Rv)

(21)

The variables above are, k, discrete time, x, state vector,

y, output vector, u, input (or control) vector, A, state matrix,

B, input matrix, h(xk,uk), measurement function, ηx and ηy,

the process noise and sensor’s error, are Gaussian with zero

mean and σx and σy as variance.

The predicted state estimate, x̂(k + 1|k), is computed

from the previous optimal state estimate, x̂(k|k), as in the

Kalman Filter, and h(xk,uk) is used to compute the predicted

output, ŷ(k+1|k), estimate using the predicted state estimate.

Once h(xk,uk) cannot be in a matrix form, the system must be

linearized in each time step so that the Kalman Filter equa-

tions can be applied.

The linearization around the estimation is done comput-

ing, at each time step, the matrix of partial derivatives. The

Jacobian is computed with the current predicted state estima-

tion, J(x(k+1|k),u(k+1))≡ J.

J(xk,uk) =







∂h1
∂x1

... ∂h1
∂xi

... ... ...
∂h j

∂x1
...

∂h j

∂xi






(22)

The Measurement Update is defined as:















x̂(k+1|k+1) = x̂(k+1|k)+
+K(k+1)[y(k+1)−h(x̂(k+1|k),u(k+1))]

P(k+1|k+1) = P(k+1|k)−K(k+1)JP(k+1|k)
(23)

This process is repeated at every time step, with the new

optimal estimate state and its covariance influencing the pre-

diction of the next state estimation, as follows:

{

x̂(k+1|k) = Ax̂(k|k)+Bu(k)
P(k+1|k) = AP(k|k)AT +Rw

(24)

Once again, the Kalman Gain affects the predicted state

estimation. With a high gain, the filter places more weight on

the most recent measurements, and thus follows them more

responsively. With a low gain, the filter follows the model

predictions more closely.

K(k+1) = P(k+1|k)JT [Rv + JP(k+1|k)JT ]−1 (25)



4.3 Kalman Filter as Complementary Filtering

Sensor fusion can be achieved by several algorithms,

one of the less complex to implement is the complementary

filter. The filter is defined by two gains that act as high and

low pass filter to the sensors’ output. This filter is specially

important in the orientation estimation as the accelerometer

is susceptible to vibrations that need to be filtered. In order

to obtain a moving average, that is, a filtered acceleration,

a low pass filter is the answer. On the opposite end of the

spectrum, the rate gyro is accurate in the short term but due

to the bias term the long term results lack accuracy. With this

in mind a high pass filter is desired. That way the short-term

gyroscope data is used while eliminating long term errors.

Fig. 4. Block Diagram.
Fig. 5. Bode Diagram.

The filters are defined as:

GL(s) =
l

s+ l
GH(s) =

s

s+ l
(26)

And the combination of both:

GH(s)+GL(s) = 1 (27)

Figure 6 shows a scenario where the inputs are the rate

gyro, ẋmH , and the magnetometer, xmL. The filter is repre-

sented by X̂(s) = l
s+l

XmL(s)+
s

s+l

ẊmH (s)
s

.

Fig. 6. Block Diagram of Complementary Filtering with integration.

The same filtering can be achieved using a Kalman Fil-

ter. The input is the rate gyro, u = ẋmH = ygyro,z, and the

output is the magnetometer, y = xmL = ymag. Recalling the

Kalman equations:







ẋ = Ex(t)+Fu(t)
y(t) = Gx(t)+Hu(t)
˙̂x = Ex̂(t)+Fu(t)+L(y(t)−Gx̂)

(28)

If equation (28) is rearranged, something similar to

equation (27) appears:

Ŷ (s)= [G(sI−E+LG)−1L]Y (s)+[G(sI−E+LG)−1F ]U(s)
(29)

X̂(s) =
GL

sI −E +LG
XmL(s)+

GFs

sI −E +LG

ẊmH(s)

s
(30)

4.4 Non-linear Filtering

The non-linear filter was designed to obtain the position

estimation of drone 3. The state space model is defined as:

{

ẋ = Ex(t)+Fu(t)
y(t) = h(x, t)

(31)

The variables above are, t, continuous time, x, state vector, y,

output vector, u, input (or control) vector, E, state matrix, F

and h(x, t) the output function.

For the stability proof of the non-linear filter the states

are the position of drone 3, ~p3 and the control vector is the

velocity of drone 3, ~̇p3:

x = ~p3 u = ~̇p3 (32)

The inputs of the filter are the GPS positions of Drone 1

and Drone 2, as well as the angle sensor:

hT =

[

~p1 ~p2

~d1,3

|| ~d1,3||

~d2,3

|| ~d2,3||

]

(33)

Must be noted that:

~d1,3 = ~p3 − ~p1 ~̃p3 = ~p3 − ~̂p3 (34)

~d1,3

|| ~d1,3||
× (~p3 − ~p1) = 0 (35)

~̂p3 − ~p1 =−~̃p3 + ~d1,3 a×b = S(a)b (36)





a1

a2

a3



×





b1

b2

b3



=





a2b3 −b2a3

b1a3 −a1b3

a1b3 −b1a3



= S(a)





b1

b2

b3



 (37)

Using the previous equations:

S(
~d1,3

|| ~d1,3||
)(~̂p3 − ~p1) = S(

~d1,3

|| ~d1,3||
)(~̂p3 − ~p3 + ~p3 − ~p1) (38)



S(
~d1,3

|| ~d1,3||
)(−~̃p3 + ~d1,3) =−S(

~d1,3

|| ~d1,3||
)~̃p3 (39)

The non-linear filter takes the form:

˙̂
~p3 = u+ l

2

∑
i=1

S(
~di,3

|| ~di,3||
)2(~̂p3 −~pi) (40)

To check whether or not ~̃p3 converges asymptotically to

zero, consider the error system:

˙̃~p3 = ~̇p3 −
˙̂
~p3 (41)

˙̃~p3 = u−u+ lS(
~d1,3

|| ~d1,3||
)2 ~̃p3 + lS(

~d2,3

|| ~d2,3||
)2 ~̃p3 (42)

To prove that the error tends to zero Lyapunov stabil-

ity arguments can be invoked, starting with a candidate Lya-

punov function that is positive definite:

V (x)> 0 (43)

V (x) =

{

0,x = 0

> 0,x 6= 0
(44)

V (x) =
1

2
xT x (45)

The positive definiteness of V (x) has been proven. If one

can show that the time derivative of V (x) is negative definite

along the solutions of the system, then one guarantees that

x = 0 is asymptotically stable.

V̇ (x) =

{

0,x = 0

< 0,x 6= 0
(46)

V̇ (x) = xT ẋ = ~̃p3
T

l
2

∑
i=1

S(
~di,3

|| ~di,3||
)2 ~̃p3 (47)

Note that S(a)T = −S(a). Therefore, V̇ =

−l ~̃p3
T

∑2
i=1 ST (

~di,3

|| ~di,3||
)S(

~di,3

|| ~di,3||
)~̃p3 which is negative def-

inite provided that ~d1,3 and ~d2,3 are not collinear.

When ˙V (x) = 0 when x = 0 and x → 0 when t → ∞ ,

therefore the filter guarantees convergence of ~̂p3 to ~p3 and

takes the form:

˙̂
~p3 = u+ l

2

∑
i=1

S(
~di,3

|| ~di,3||
)2(~̂p3 −~pi) (48)

5 Modeling

Each subsystem is defined by its equations, matrices and

functions. The simulation subsystem can be described in

state space representation in discrete time, as in equation (49)

or equation (50).

A linear output is represented by:

{

x(k+1) = Ax(k)+Bu(k)+ηx(k),ηx(k)∼ N(0,Rw)
y(k) =Cx(k)+Du(k)+ηy(k),ηy(k)∼ N(0,Rv)

(49)

If the output is not linear it can be defined as:

{

x(k+1) = Ax(k)+Bu(k)+ηw(k),ηw(k)∼ N(0,Rw)
y(k) = h(xk,uk)+ηv(k),ηv(k)∼ N(0,Rv)

(50)

But, for a better intuitive understanding of the model,

continuous time is used instead of discrete time.

{

ẋ = Ex+Fu+ηw, ηw ∼ N(0,Rw)
y = Gx+Hu+ηv, ηv ∼ N(0,Rv)

(51)

As the block diagrams are expressed in discrete time, MAT-

LAB functions can be used to transform the state space rep-

resentation from continuous to discrete time.

5.1 Kalman Filter vs Complementary Filtering

In order to choose which implementation shall be used

in the orientation (Kalman Filter or Kalman Filter as Com-

plementary Filtering), a practical comparison between the

two must be done.

The simulation is equal for both implementations and is

defined by equation (51). Where the states are the heading

and its rate of change:

xT =
[

ψ r
]

(52)

Once the orientation is a result of process error, ηψ, the

only input is the Bias, u = βgyro,z.

E =

[

0 1

0 0

]

F =

[

0

0

]

ηw =

[

0

ηψ

]

(53)

The output is the magnetometer and the rate gyro:

G =

[

1 0

0 1

]

H =

[

0

1

]

ηv =

[

ηmag

ηgyro

]

(54)

5.1.1 Kalman Filter

Using the previous representation, the Kalman Filter is

defined by heading, bias and heading rate of change as states.

xT =
[

ψ βgyro,z r
]

(55)



Once the orientation is a result of process error, ηψ, there

is no input.

E =





0 0 1

0 0 0

0 0 0



F =





0

0

0



ηw =





0

0

ηψ



 (56)

The output is the magnetometer and the rate gyro:

G =

[

1 0 0

0 1 1

]

H =

[

0

0

]

ηv =

[

ηmag

ηgyro

]

(57)

5.1.2 Kalman Filter as Complementary Filtering

Using the previous representation, the filter is defined by

the heading and bias as the only states and the rate gyro as

input of the filter, u = ygyro,z.

xT =
[

ψ βgyro,z

]

(58)

If the gyro equation is rearranged with ˙βgyro,z = 0:

r = ygyro,z −βgyro,z −ηgyro,z (59)

Using equation (59), the filter’s matrices are the follow-

ing, with the only output from the filter ψ.

E =

[

0 −1

0 0

]

F =

[

1

0

]

ηx =

[

−ηgyro

0

]

(60)

5.2 EKF - 3D Drone Positioning and Orientation

Any vector defined at any local referential can be trans-

formed to the inertial referential and vice-versa:

iR
Vi
i p j =

I p j,
IRI

i p j =
Vi p j i, j ∈ [1,2,3] (61)

5.2.1 Simulation

The simulation takes the form of equation (51), but

now, the measurements are set by h(x,u)+ηv, ηv ∼
N(0,Rv). The simulation states are the position of drone 1,

the relative position of drone 1 and drone 3, as well as drone

3 and drone 2, and the respective velocities, plus the orienta-

tion.

xT =
[

~p1
~d1,3

~d3,2 φi θi ψi ~̇p1
~̇d1,3

~̇d3,2 pi qi ri

]

(62)

The simulation inputs are, as before, the linear accelera-

tions.

uT =
[

~a1 ~a2 ~a3

]

(63)

The simulation state space matrices are:

E =

[

018 I18

018 018

]

36×36

F =

















09

09

I3 03 03

−I3 03 I3

03 I3 −I3

09

















36×6

(64)

The measurement function of the simulation is based on

GPS, distance and angle sensor, rate gyro, accelerometer and

magnetometer. It should be noted that the output of the angle

sensor is expressed in the local referential. The output are

, Oh15, referent to the orientation and, Ph15, referring to the

positioning.

PhT
15 =

[

~p1 ~p2 || ~d1,3|| || ~d3,2|| || ~d1,2||
~d1,3

|| ~d1,3||

~d3,2

|| ~d3,2||

~d1,2

|| ~d1,2||

]

(65)

OhT
15 =

[

ψi gyroi acci

]

, i ∈ [1,2,3] (66)

5.2.2 Orientation

This filter has as states the orientation of the three

drones, [φi,θi,ψi], i ∈ [1,2,3], and the bias from the rate gy-

roscope, βi, i ∈ [1,2,3]

xT =
[

φi θi ψi βix βiy βiz

]

(67)

Even though the orientation is a result of process noise, the

system has an input, the rate gyro.

uT =
[

p1 q1 r1 p2 q2 r2 p3 q3 r3

]

(68)

The state space matrices of the Extended Kalman Filter are:

E =

















03 −I3 03×12

03×18

03×9 −I3 03×6

03×18

03×9 03×6 −I3

03×18

















18×18

F =

















I3 03 03

03 03 03

03 I3 03

03 03 03

03 03 I3

03 03 03

















18×9

(69)

The output function is based on the magnetometer and

the accelerometer. Recalling the respective equations, with

i ∈ [1,2,3]:

OhT =
[

gsen(θi),−gcos(θi)sen(φi),−gcos(θi)cos(φi),ψi

]

(70)



And its Jacobian of the orientation measurement function,
Oh, is:

JO =

















































0 a 0

b c 0

d e 0

0 0 1









04×15

04×3









0 f 0

h k 0

l m 0

0 0 1









04×12

04×6









0 n 0

p q 0

r s 0

0 0 1









04×9









































12×18

(71)

a = gcos(θ1), b =−gcos(θ1)cos(φ1), c = gsin(θ1)sin(φ1)
(72)

d = gcos(θ1)sin(φ1), e = gsin(θ1)cos(φ1), f = gcos(θ2)
(73)

h =−gcos(θ2)cos(φ2), k = gsin(θ2)sin(φ2), (74)

l = gcos(θ2)sin(φ2), m = gsin(θ2)cos(φ2), n = gcos(θ3)
(75)

p =−gcos(θ3)cos(φ3), q = gsin(θ3)sin(φ3), (76)

r = gcos(θ3)sin(φ3), s = gsin(θ3)cos(φ3) (77)

5.2.3 Position

In this iteration the states are the position of drone 1,

~p1, the distance between drone 3 and drone 1, ~d1,3, the dis-

tance between drone 3 and drone 2, ~d2,3 and the respective

velocities, with coordinates (x,y,z).
In continuous time the simulation is defined as follows:

xT =
[

~p1
~d1,3

~d3,2 ~̇p1
~̇d1,3

~̇d3,2

]

(78)

The inputs are, as before, the linear accelerations.

uT =
[

~a1 ~a2 ~a3

]

(79)

The state space representation is:

ẋ =









03





1 0 0

0 1 0

0 0 1





03 03









6×6

x+









03




1 0 0

−1 0 1

0 1 −1













6×3

u (80)

In order to implement the Extended Kalman Filter the

Jacobians must be defined. The three output functions are

concatenations of three different sensors, GPS, distance and

normalised distance vectors, therefore, the three Jacobians

will also be a concatenation of three matrices.

The Jacobian of the GPS is:

JGPS =

[

I3 03 03 03×9

I3 I3 I3 03×9

]

6×18

(81)

The Jacobian of the distance sensor is:

J ~di, j
=



03





a1 b1 c1

0 0 0

g1 k1 l1









0 0 0

d1 e1 f1

g1 k1 l1



 03×9





3×18

(82)

a1 =
d(1,3)x

|| ~d1,3||
, b1 =

d(1,3)y

|| ~d1,3||
, c1 =

d(1,3)z

|| ~d1,3||
(83)

d1 =
d(3,2)x

|| ~d3,2||
, e1 =

d(3,2)y

|| ~d3,2||
, f1 =

d(3,2)z

|| ~d3,2||
(84)

g1 =
d(1,2)x

|| ~d1,2||
, k1 =

d(1,2)y

|| ~d1,2||
, l1 =

d(1,2)z

|| ~d1,2||
(85)

The Jacobian of the normalised distance vectors is:

J ~di, j

|| ~di, j ||

=





























03





a2 b2 c2

b2 d2 e2

c2 e2 f2



 03×12

03×6





g2 k2 l2
k2 m2 n2

l2 n2 p2



 03×9

03





q2 r2 s2 q2 r2 s2

r2 t2 u2 r2 t2 u2

s2 u2 v2 s2 u2 v2



 03×9





























9×18

(86)

a2 =
d2
(1,3)y +d2

(1,3)z

|| ~d1,3||3
, b2 =−

d(1,3)x ×d(1,3)y

|| ~d1,3||3
, c2 =−

d(1,3)x ×d(1,3)z

|| ~d1,3||3

(87)

d2 =
d2
(1,3)x +d2

(1,3)z

|| ~d1,3||3
, e2 =−

d(1,3)y ×d(1,3)z

|| ~d1,3||3
, (88)

f2 =
d2
(1,3)x +d2

(1,3)y

|| ~d1,3||3
, g2 =

d2
(3,2)y +d2

(3,2)z

|| ~d3,2||3
, (89)



k2 =−
d(3,2)x ×d(3,2)y

|| ~d3,2||3
, l2 =−

d(3,2)x ×d(3,2)z

|| ~d3,2||3
(90)

m2 =
d2
(3,2)x +d2

(3,2)z

|| ~d3,2||3
, n2 =−

d(3,2)y ×d(3,2)z

|| ~d3,2||3
(91)

p2 =
d2
(3,2)x +d2

(3,2)y

|| ~d3,2||3
, q2 =

d2
(1,2)y +d2

(1,2)z

|| ~d1,2||3
(92)

r2 =−
d(1,2)x ×d(1,2)y

|| ~d1,2||3
, s2 =−

d(1,2)x ×d(1,2)z

|| ~d1,2||3
(93)

t2 =
d2
(1,2)x +d2

(1,2)z

|| ~d1,2||3
, u2 =−

d(1,2)y ×d(1,2)z

|| ~d1,2||3
(94)

v2 =
d2
(1,2)x +d2

(1,2)y

|| ~d1,2||3
(95)

5.3 Non-linear Filter

5.3.1 Simulation

In this iteration, the simulation states are the position of

drone 1, ~p1, drone 2, ~p2, and drone 3, ~p3 plus the orientation

[φi,θi,ψi], with i ∈ [1,2,3] and the respective velocities.

xT =
[

~p1 ~p2 ~p3 φi θi ψi ~̇p1 ~̇p2 ~̇p3 pi qi ri

]

(96)

The simulation inputs are, as before, the linear accelera-

tions.

uT =
[

~a1 ~a2 ~a3

]

(97)

The simulation state space matrices are:

E =

[

018 I18

018 018

]

36×36

F =









09

09

I9

09









36×6

(98)

The measurement function of the simulation is based on

GPS, angle sensor, rate gyro, accelerometer and magnetome-

ter.

PhT
16 =

[

~p1 ~p2

~d1,3

|| ~d1,3||

~d2,3

|| ~d2,3||

]

(99)

OhT
16 =

[

ψi gyroi acci

]

, i ∈ [1,2,3] (100)

5.3.2 Position

The goal is to obtain the estimation of Drone 3, using

the non-linear filter. The position of drone 1 and 2, ~p1 and

~p2, is assumed to be the reading from the GPS sensors. The

orientation filter is the same as in 5.2.2.

˙̂x = Ex̂+Fu+ l
2

∑
i=1

S(
~di,3

|| ~di,3||
)2(~̂p3 −~pi) (101)

The state is the position of drone 3 and its velocity. he

control vector is the linear acceleration of drone 3.

xT =
[

~p3 ~̇p3 u = ~a3

]

(102)

The matrices E, F and the gain, l, is the following matrix,

with a = 0.5 and b = 0.4:

E =

[

03 I3

03 03

]

6×6

F =

[

03

I3

]

6×3

l =

[

aI3

bI3

]

6×3

(103)

6 Results

The following table outlines the root mean square de-

viation in the two implementations tested to determine the

heading, that is, Kalman Filter and Kalman Filter as Com-

plementary Filtering.

Configuration RMS Deviation [º]

Kalman Filter 0.611

Complementary Filtering 0.022

Table 1. Kalman Filter as Complementary Filtering - RMS Devia-

tion Table.

Table 2 displays the root mean square deviation of the

estimate and real position of Drone 3 in the EKF and Non-

linear filters. Note that each local referential, {Vi}, i ∈
[1,2,3], sympathetic with the drone’s kinematic, is not only

defined by its position, I pi, i ∈ [1,2,3], but also, its orienta-

tion, [φi,θi,ψi], i ∈ [1,2,3], in an inertial referential, {I}.

Config.: x−axis[m] y−axis[m] z−axis[m]

EKF 0.8114 1.5697 1.0639

Non-linear 2.4023 2.3082 1.2903

Table 2. 15th Configuration - RMS Deviation Table of Drone 3.



7 Conclusions

The final configuration is a result of a series of imple-

mentations and simulations. During this process the devia-

tion between the real position and the optimal estimate suf-

fers alterations. Although in this paper only 3 configurations

were tested, in the process of this conclusions fifteen config-

urations were tested.

The filter chosen to obtain the orientation was the

Kalman Filter used as a Complementary Filter due to the bet-

ter results shown in the tests. Recalling Table 1:

Configuration RMS Deviation [º]

Kalman Filter 0.611

Complementary Filtering 0.022

Table 3. Orientation Filter - RMS Deviation.

As previously mentioned, sensor fusion can be achieved

by several algorithms, one of the less complex to implement

is the complementary filter. This filter is specially important

in the orientation estimation as the accelerometer is suscep-

tible to vibrations that need to be filtered. In order to obtain

a moving average, that is, a filtered acceleration, a low pass

filter is the answer. On the opposite end of the spectrum, the

rate gyro is accurate in the sort term but due to the bias term

the long term results lack accuracy. With this in mind a high

pass filter is desired. That way the short-term gyroscope data

is used while eliminating long term errors.

The first implementations were in two dimensions and

with no orientation. It was observed that the same simula-

tion, but instead of two dimensions tested in three dimen-

sions, (x,y,z), has substantially different results to the same

sensors. In 3D, the best choice is the concatenation of both

the distance and normalised vector between drones, there-

fore it was the configuration used in both the EKF and the

Non-linear Filter. Recalling Table 2:

Config.: x−axis[m] y−axis[m] z−axis[m]

EKF 0.8114 1.5697 1.0639

Non-linear 2.4023 2.3082 1.2903

Table 4. 15th Configuration - RMS Deviation Table of Drone 3.

The introduction of the non-linear filter cannot be evalu-

ated only based on the RMS deviation though. The need for

less computing power as well as the need for less batteries

due to the fewer sensors used and computing power can be a

plus in some situations.

In order to evaluate the results some context on the envi-

ronment in which the drones operate is fundamental. Never-

theless, both configurations tested are suited for implemen-

tation.

Future work should include the further development of

the non-linear filter technique. For instance, the generalisa-

tion of this filter for all the estimates of all drones’ positions

and not only Drone 3. Also, for further validation, these con-

figurations should be tested using an UAV on the context of

real time navigation.
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